Peter Pommergård Lind

I research in

About

I'm Peter Pommergård Lind, a Quantitative Researcher at Verition. I research the exciting cross-section of machine learning and option theory.

Quantitative Researcher at Verition Fund Management

Currently, I work at Verition in London as a Quant Researcher in the Quant Analytics team led by Jesper Andreasen. Before joining Verition, I was a Ph.D. Fellow in Finance specializing in machine learning and option theory. I hold a Bachelor’s and a Master’s degree in Actuarial Mathematics from the University of Copenhagen.

  • Birthday: 8 July 1995
  • Papers: SSRN
  • Phone: +45 51 15 78 81
  • City: London, UK
  • Age: 29
  • Degree: Ph.D Finance, Cand. act.
  • Email: pplinvest1@gmail.com
  • Job: Quantitative Researcher

I love sports and play all kinds of sports such as table football, soccer, tennis, etc... Other interests include card games, computer science, mathematics, and trading.

Research

I research machine learning methods for Finance. More specifically, I develop fast and accurate methods for option valuation and calibration. In my research, I combine classical option theory methods with modern methods such as neural networks, tree regression, and differential machine learning to produce powerful tools for trading and risk management. I hope these tools can improve solutions to complex, real-world problems, changing the world.

Papers

Gas Storage Valuation using Delta Least Squares Monte Carlo Method

We propose the Delta least squares Monte Carlo method (Delta LSM), a novel method for estimating spot-based trading strategies for gas storage management. We analytically prove that Delta LSM’s cross-sectional regression estimator is unbiased. Furthermore, numerical experiments show the method leads to less overfitting (reduced variance) compared to the widely adopted least squares Monte Carlo method (LSM). As a result, Delta LSM outperforms LSM across various sample sizes and volatilities environments, exhibiting a consistently higher Sharpe ratio.

Preprint available online here.


Delta Least Squares Monte Carlo Pricing of American Options

We present a new simulation-based American option pricing method, Delta least squares Monte Carlo (Delta LSM). Whereas the classical LSM method from Longstaff & Schwartz (2001) uses only the discounted payoff to learn the continuation value, Delta LSM uses both the discounted payoff and its derivative (Delta) to estimate regression coefficients. The Delta LSM is straightforward to implement and comes at a little extra numerical cost. It is quite literally an add-on to the LSM method. Our numerical experiments show that irrespective of your speed/safety preference – and robustly across market scenarios – Delta LSM gives a marked improvement over classical LSM.

Preprint available online here.


NN de-Americanization: A Fast and Efficient Calibration Method for American-Style Options

Neural network (NN) de-Americanization produces fast and accurate pseudo-European option prices from American option market prices, facilitating the calibration of derivative models. The industry approach binomial de-Americanization takes a flat volatility surface as input. In contrast, the NN de-Americanization method takes the detailed shape of the volatility surface as an input; this is critical for the accurate evaluation of the early exercise premium (EEP) when interest rates are not close to zero.

Preprint available online here.


Overcoming the Feature Selection Issue in the Pricing of American Options

The feedforward neural network Monte Carlo method (FNNMC) exhibits more robustness and accuracy than the state-of-the-art least squares Monte Carlo method (LSM) in pricing several American-style options. Specifically, the FNNMC price estimates are accurate for basket options, where the FNNMC price errors are more than four times smaller than the LSM with the best choice of basis functions. By training the neural network the FNNMC avoids the issue of choosing a proper set of basis functions. Hence we circumvent manually engineering the features for each type of option. Furthermore, we explore in-depth the hyperparameter selection for the FNNMC. In the exploration, we use a novel approach called price grid search, where the search is done at the price level instead of at the usual regression level.

Preprint available online here.

Outreach

Upcoming

Past

  1. Jul 2024, NN de-Americanization, Bachelier World Congress 2024, Rio de Janeiro, Brazil
  2. Mar 2024, NN de-Americanization, Stony Brook Quant Finance Webinar, New York, USA
  3. Jan 2024, NN de-Americanization, Vola Dynamics, New York, USA
  4. Jan 2024, NN de-Americanization, OptionMetrics, New York, USA
  5. Nov 2023, Danish Podcast on Option Theory, Rig på viden, Copenhagen, Denmark
  6. Nov 2023, NN de-Americanization, QuantMinds 2023, London, England
  7. Oct 2023, NN de-Americanization, Bloomberg Quant (BBQ) Seminar Series, New York, USA
  8. Mar 2022, Overcoming the Feature Selection Issue in the Pricing of American Options, AU Econometrics-Finance Lunch Seminar, Aarhus, Denmark
  9. Mar 2022, Overcoming the Feature Selection Issue in the Pricing of American Options, CBS Junior Economic Seminar, Copenhagen, Denmark

Resume

Summary

Peter Pommergård Lind

Quantitative Researcher at Verition Fund Management. Studying option pricing and machine learning methods in Finance.

Education

Ph.D. in Finance

Graduated 2024

Aalborg University, Business School, Aalborg

Keywords: Option Theory, Machine Learning, Numerical Method, Deep Learning, Optimal Stopping

M.S. in Actuarial Mathematics

Graduated 2020

University of Copenhagen, Department of Mathematics, Copenhagen

Thesis: Classical Option Pricing Theory and Extensions to Deep Learning

B.S. in Actuarial Mathematics

Graduated 2019

University of Copenhagen, Department of Mathematics, Copenhagen

Employment

Quantitative Researcher

2024 - Present

Verition Fund Management, London, UK

  • Building a financial quantitative analytics library under the leadership of Dr. Jesper Andreasen in the Quantitative Analytics team

Ph.D. Fellow in Finance

2021 - 2024

Aalborg University, Aalborg, Denmark

  • Researching in Machine Learning and Numerical Methods Option Theory

Internship: Front Office Research Analyst

Summer 2023

Norlys Energy Trading, Aalborg, Denmark

  • Developed a valuation model for gas storage and optimal execution

Teaching Assistant

2019 - 2022

University of Copenhagen, Copenhagen, Denmark

Held exercise classes for both undergraduate and graduate students at Aalborg University and University of Copenhagen (see below in 'Teaching Portfolio' for more details).

Actuary

2019 - 2021

PFA Pension, Copenhagen, Denmark

Numerical software design and solutions to handle the biggest Danish pension fund internal policy system.

Internship: Front Office Student Assistant

Summer 2020

PFA Asset Management, Copenhagen, Denmark

Took the charge in implementing efficient routines for interest rate curve interpolation/extrapolation (Monotone Convex and Smith-Wilson) for the internal Quant library.

Teaching Portfolio

I consider myself privileged to teach an array of diverse courses to students who truly inspire me.

Year Title Study level Responsibility
Spring 2023 Master Theses in Economics Master Supervisor
Spring 2023 Financial Engineering Project Master Supervisor
Spring 2022 Financial Derivatives Master Teaching Assistant
Spring 2022 Bachelor Thesis in Economics Bachelor Supervisor
Fall 2021 Portfolio Theory Master Teaching Assistant
Fall 2021 International Finance Master Teaching Assistant
Fall 2021 Statistical Analyses of Econometric Time Series Master Teaching Assistant
Spring 2021 Mathematical Modelling Bachelor Teaching Assistant
Fall 2020 Continuous-Time Finance Master Teaching Assistant
Fall 2020 Basic Non-Life Insurance Mathematics Bachelor Teaching Assistant
Spring 2020 Topics in Non-Life Insurance Master Teaching Assistant
Spring 2020 Insurance and Law Topics Bachelor Teaching Assistant
Fall 2019 Introduction to Economics Bachelor Teaching Assistant
Fall 2019 Introduction to Numerical Analysis Bachelor Teaching Assistant

Contact

Thank you for visiting my website. If you have any questions or would like to learn more about my research, please do not hesitate to send me an email at pplinvest1@gmail.com.